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Metastable Systems Driven by Colored Noise: 
The Stationary State 
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A new perturbation method of finding the stationary distribution function of 
the form P = R e x p ( - ~ / D )  for a metastable (anharmonic) system driven by 
exponentially correlated noise is presented. The noise term is modeled by a 
Langevin equation and the stationary solution of the resultant (2 + l)-dimen- 
sional Fokker-Planck equation is sought as a series expansion in the anhar- 
monicity parameter around the known harmonic solution valid near the 
metastable minimum. The series converges for small r in the leading order of the 
noise intensity D anywhere within the well. Analytic expressions for ~b and R 
were found for a metastable and a bistable potential. The resultant decay rate 
is in accordance with previously published results. The method is suitable also 
for numerical calculations. 
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The problem of the stochastic dynamics of a metastable (1 + 1)-dimensional 
system driven by exponentially correlated Gaussian noise (correlation 
time ~) has attracted a good deal of attention in recent years, in particular 
with regard to the decay rate ~ .  The consensus ~ emerging from the 
many conflicting theories is that the Arrhenius factor of the decay rate 
increases as O(z2/D) for small r and noise intensity D. This result was 
derived by instanton methods, ~2,3) by considering the Stratonovich type (4~ 
Fokker-Planck equation, ~1) and by embedding the (l+l)-dimensional 
system driven by colored noise in a (2+ 1)-dimensional one driven by 
white noise, ~5~ an approach adopted also in this work. A common feature 
of these small-z calculations is an expansion around the Markovian 
stationary state. The present work approaches the problem from the 
opposite side. It is assumed that the anharmonic potential is given by a 
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polynomial and the full stationary solution is then sought in the form 
of a perturbation series in the anharmonicity parameter around the known 
(for any r) harmonic stationary state valid near the well minimum. The 
coefficients of the expansion are sought as analytic functions of r; the 
proposed method is, however, also well suited for numerical calculations. 

It turns out that for small enough correlation time ~ and noise intensity 
D the perturbation series converges for arbitrary values of the anharmo- 
nicity parameter and yields the stationary distribution everywhere within 
the well in the leading order of D. The actual domain of convergence in the 
(D, r) plane could not be determined; the validity of the expansion was 
verified a posteriori by comparison with published results. 

A stationary distribution function in the extended two-dimensional 
phase space was derived in this fashion for a metastable (10) and a bistable 
(13) potential; the resultant barrier height Q~ is in accordance with the 
general formula given by Bray eta/. (3) Once the stationary distribution is 
known, it is easy to derive, inter alia, the mean first passage time and the 
corresponding decay rate. 

Consider the stochastic equation 

= - V ' ( x )  + r  (1)  

where ~ is an exponentially correlated Gaussian noise such that 
(r  ~(t2)) = D r  -1 exp(-I t1  - t2l/~). It is possible to embed this (1 + 1)- 
dimensional system driven by colored noise into a (2 + 1 )-dimensional one 
driven by white noise. (5) This is achieved by supplementing Eq. (1) with 

= - ~ / r  + (2D'c-2)1/2 l~(t) (2) 

where ~(t) is the standard Wiener process. The (Ito) Fokker-Planck 
equation for the extended system (1) and (2) is then 

(3) 

As r ~ 0, Eq. (1) leads to a Smoluchowski equation whose stationary state 
is given by the thermal equilibrium distribution PT=exp[--V(x)/D].  
For ~ > 0 the condition of detailed balance is no longer satisfied and P r  
is not a stationary state. The problem is then to find a solution of 
L~[P(x, ~1~)] = 0  such that P(x, ~10)-= Pr (x)  for all ~. 

A simple example is furnished by the harmonic potential V(x) = 0)x2/2 
(0)>0), for which the Eqs. (1) and (2) can be solved explicitly. The 
quantities relevant to the stationary state are the equal-time correlations 
as t ~ o o :  <~2(t)>~D/z, <x(t)~(t))--~D/(l+0)r), and <x2(t)) --~ 
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D/[co(1 + cot)]. The corresponding unnormalized solution of the equation 
L ~ [ P ] = 0  is then the bivariate Gaussian probability distribution (6t 
Po(x, ~]r) = exp[-~b(~ ~ ] r)/D] with 

~(~ (l +coQ~.2--coz(l +cor)~x+ 2 (l +co'c)2x2 (4) 

Locally Po is a solution of L~ [Po] = 0 for arbitrary co. 
Let now the stationary solution of Eq. (3) be sought in the form (5/ 

P(x, ~]~) = R(x, ~lz) exp[ -~b(x, ~ I Q/D] 

where the stochastic potential ~b and the multiplicative factor R satisfy 

1 
R2,e3( ~[~] + Y~~ ~] + Z)R~ = 0 (5) 

where the operators 2 ~  i) are 

2p~ 1)[~b] = ~b~ + ~r(~bS - ~br - V'~2~bz (6) 

5f~~ O]=vZ(v'-~) Rx + (~z- 2~x) Rr + (V"'c2 + v-(~r162 R (7) 

Let the stochastic potential be designated as ~ in the leading order of D. 
Then from Eq.(5) it follows that S ~ - 1 ~ [ ~ ] = 0 .  The solution of this 
equation may then be used to obtain R in the leading order of the noise 
intensity from ~ ~  0]  = 0. The basic idea of this article is to seek the 
stationary solution in the form of a perturbation series in the anhar- 
monicity parameter around the harmonic solution (4) valid near the well 
minimum. The stochastic potential ~ is written accordingly as 

g,(x, ~1~) = ~ b~r ~1~) (8) 
i - -O  

and we demand that ~ - ~ ) [ ~ ] = 0  be satisfied in each order of b 
separately, tp ~~ q~(0/is known and for i >  0 the problem becomes linear. If 

is found in this manner to a given order in b, then R may be found to 
the same order from 5r176 ~b] = 0  by the same procedure using the 
ansatz 

R(x, ~[~)= 1 + ~ biR(~)(x, ~[r) (9) 
i = I  

The functions 0 and R must go over to the Smoluchowski limit as ~ ~ 0, 
i.e., tg(x, 4 1 0 ) -  V(x) and R(x, ~[0) -- 1. 
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It will be assumed throughout that V(x) is a polynomial in x with a 
metastable or a bistable minimum at x0 = 0 and a local maximum at the 
point Xl. It will be convenient to introduce the frequencies co, = V"(x~) 
(note that co I <0) ,  the dimensionless times ~ =  Ico,[ ~, and also a new 
variable y = ~ which has the dimension of x. 

The simplest possible example, on which the basic features of the 
calculation will be outlined, is provided by the cubic potential 

V(x) = ax2/2 - bx3/3 (10) 

with co o = a, xi = a/b, co~ = -a ,  and '171 = az. The barrier height is Qo = a3/662 
and ~(0) is obtained from Eq. (4) with co = coo. 

Inspection reveals that O ( ~  This 
suggests that r be sought in the form of either even- or odd-order 
homogeneous polynomials in x and ~ of order j ~< i + 2. This ansatz follows 
from the form of 0 (~ and from the Smoluchowski limit. Their coefficients 
may then be found successively by substitution into 5~ = 0  and by 
comparison of factors at xny ~' in each order of b. It turns out that the 
functions ~(o are given by homogeneous polynomials of the order i + 2 ,  a 
circumstance which greatly simplifies the calculation. In fact, there exfsts a 
direct method of evaluating the functions ~,(g), which obviates the need to 
solve a system of linear equations. It is presented in the Appendix; the 
results are summarized here. The small-z analysis is more conveniently 
carried out in the (x, y) variables. Let Km(x, y[z)  be a homogeneous 
polynomial of order m in the variables x and y: K m ( x , y [ r ) =  
zjm=o k}m)('c)xJy m-j, such that the coefficients k~ m) are rational functions 
of ~ regular for r ~> 0 and nonvanishing at z = 0. With increasing perturba- 
tion order, k~ m) become rapidly extremely complicated and cannot be 
presented here in extenso. The overall structure of the solutions is, however, 
quite simple. One has 

o(i)(x, y i T ) : ~  i [Ki§ , yl T) ( I I )  

Moreover, here O(1)(x, ~10)= -x3/3  as expected. This scheme clarifies the 
behavior of O(x, Y I v) for short correlation times. For small enough r the 
series (8) converges in the well within the radius R<~a/b for any b. In 
calculations it is therefore convenient to expand the functions k}m)(z) into 
a power series in r and to retain only the desired number of terms. 

In principle it is also possible to consider an expansion around the 
potential maximum, i.e., around the saddle point of ~ in the (x, 3) plane. 
In this case, however, the coefficients k~)(~) are singular on discrete sets 
Sm. Moreover, Sm ~ S,,+ 1 and the expansion diverges for all z > 0. In par- 
ticular, the expressions (12) and (14) for the barrier height Q, cannot be 
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obtained in this way. This circumstance makes the sadle point study com- 
putationaly very demanding, since beyond the quadratic approximation it 
can only be approached from the minimum. 

For large z the resultant functions ~,(0 are more easily described in the 
(x, ~) plane: ~(~ ~ l z ) =  "c2Ki+2(x, ~['c 1). The domain of convergence in 
the (x, 4) plane is in this case unclear. The r 2 factor is at variance with the 
published large-z behavior (,-,'c/D) of the Arrhenius factor (2'7'8) and so only 
the small-r behavior shall be considered in the sequel. 

Small-T analysis of the potential (10) shows that the function ~p always 
has a minimum at (0, 0) and a saddle at (a/b, 0). The quantities of interest 
are the obvious equality 0(0, 01 r ) =  0 and 

1 2 ~(x~,OlO Q o E l + ~ V l  3 ~ ' c 4 - - [ - 2 ~  6 72 8-- = - -  271 - -  ~ T  1 -[- . . . ]  (12) 

This is the barrier height Q,; it is in accordance with Eq. (15) of Ref. 3. The 
second derivatives of ~ at both extremum points are given for any (small) 

by the quadratic form ~(o) only, i.e., by Eq. (4) with co =coi at x = x i ;  all 
higher order terms in r cancel identically. Comparison with Eq. (6) shows 
that this result holds for arbitrary r, so that the expansion around the mini- 
mum yields the correct values near the saddle. One may thus conclude that 
the perturbations converge to the exact solution O(x, ~1~) within the radius 
R <<. a/b for sufficiently small r. 

The archetypal bistable potential V ( x ) =  b2x4/4-a2x2/2 is amenable 
to the same procedure after a shift of the axes which brings one of the 
minima to the origin: 

V(x) = a2x 2 - abx 3 + b2x4/4 (13) 

Then co o = 2 a  2 at the left minimum, x 1 = a/b, col = - - a 2 ,  ~'1 = a2r, and the 
barrier height is Qo = a4/462. The solution O(x, ~lr) is again sought in the 
form (8) with ~(0) given by Eq. (4) and co = coo. The overall structure of 
is similar to the preceding case, see Eq. (11); one gains, however, but one 
degree in ~ for every two perturbation orders in b. 

Small-r analysis of the function O(x, e l f )  shows that it has extrema 
at (x,, 0) and that its second derivatives there are for all r given by the 
quadratic term ~(o) only, i.e., by Eq. (4) with co =coi at x = x,. There is 
obviously q/(0, 01r) = 0 and 

~O(xl,Oiv)=Qo[1-1 2 6 4 279 6 (14) 

All third derivatives of ~ vanish identically at the saddle. This calculation 
to the sixth order in ~ corresponds to the 14th order of the perturbation 
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theory; four more orders are required to obtain the next nonvanishing (the 
eighth) power of ~ in Q.~. The function 0(x, 0IT) to the tenth order in b 
(fourth order in ~) is listed explicitly in the Appendix. The expression (14) 
for Q~ was derived previously by Bray et al. ~3) using instanton methods. 

The multiplicative factor R is obtained by the same perturbation 
procedure. ,For small ~, for the metastable potential (10) one has 
R(~)(x, y l r )=~Ki(x ,y]z ) ,  whereas for the bistable potential (13) one 
gains, as for 0, only one degree of z for each two perturbation orders in 
b. For large v one has R(i)(x,~l'r)=Ki(x,~]'c -1) and the domain of 
convergence in the (x, 3) plane is again unclear. The quantity of interest 
for the intended decay rate calculation is the value R(xl, 01z). For the 
metastable potential (10) one obtains 

R(xl, 01 ~) -- 1 - 3av + 9a2r2/2 + O('~ 3) (15) 

and for the bistable potential (13) this becomes 

R(Xl, 01 l :  ) = 1 - 9a2r2/2 + O(~ 2) (16) 

The corresponding function R(x, 01z) is quoted in the Appendix. It should 
be noted that R does not have extrema at the points (xi, 0), but one has 
Rr162 0 I t ) = 0  at least for small ~. The function 0 has a saddle point 
at (x l ,0)  for I V"(xl)] ~<1,  but the stationary distribution function 
P = R exp(-OLD) does not, for any ~ > 0, by virtue of this property of the 
function R. 

With the stationary probability distribution P(x, ~lr) known it is 
possible to find an asymptotic (in small D) expression for the mean first 
passage time (5'9) T(B) out of the domain of attraction B of the metastable 
well and also the corresponding decay rate. The calculation is standard and 
follows closely the work of Matkowsky etal. ~9) so that only the main 
points need be presented here. T(B) is sought asymptotically for small D 
and the exponent 0 is sufficient for this task. Its value is approximately 
known at the saddle, its second derivatives at (xi, 0) are known exactly. 
In the calculation it is convenient to introduce a scaled phase space 
(x, z) by the transformation ~ = COoZ. The separatrix in the saddle point 
vicinity is then given by Zr = - ( x - x l ) t a n e ,  where tan e=( l+z~) /v~ ,  
l im,~o e = ~/2 (Smoluchowski 1 + 1 limit) and lim~ ~ ~ e = ~/4 (large-z 
limit). Near the saddle along F the function 0 is approximately 

1 
O~Q~+~O,s(O,O) s 2, 

c~v(1 -31)  2 
oss(o, o)- V T -I; (17) 
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where s is the distance from the saddle measured along F. The decay rate 
is then 

1 (~olootl) 1/2 tr ~e -Qr (18) 

1 + % 1 + V"(xo) 
~ =  R(xl, 0Iz)= R(x~, OIz) (19) 

1 --'~'1 1 + V i i ( x 1 )  ~- 

Q~ is given for small r by Eqs. (12) and (14) and R(Xl, 0[~) by Eqs. (15) 
and (16) for the two cases studied here. Xo reproduces correctly the 
Kramers result (9) for overdamped systems. 

For the bistable potential (13) the numerical factor ~ leads to a result 
often quoted in the literature, <5'1~ 

E 1 l+2a~z 1 - ~ a ' c + O ( z  2) ~1 3a2 r 

The crucial step of the calculation is the ansatz P = R  exp(-~b/D), 
which guarantees the convergence in the leading order of D, at least for 
small r. The simpler ansatz P=exp(-~/D) yields, of course, the same ~9. 
The next order of q~ in D, which corresponds to the factor R of the present 
ansatz, yields rather contradictory results in the saddle point vicinity, 
presumably due to a breakdown of the polynomial approximation. Either 
ansatz, however, confirms that the full stationary distribution function P 
does not have extrema at the points (x~, 0) of the (x, 4) plane for any ~ > 0. 
The shift in their position is O(Dr), it does not alter the asymptotic expres- 
sion for t%. An extension of the proposed method to larger ~ or D is con- 
tingent on a suitable ansatz for P for which the polynomial approximation 
converges. The study of the extremal properties of P in this limit merits 
further attention. 

A P P E N D I X  

In principle it is possible to find the coefficients of the homogeneous 
polynomials which are the solutions to Eq. (6) by direct substitution and 
successive solving of the resultant linear system in every order of b. A 
scaling argument allows one to calculate the coefficients directly. It will be 
illustrated on the bistable potential (13). Let p=ax, (r=ay=a~, 
%=a2z, fl=b/a 2, and ~--Z~=ofli~Ii)(p, alZl). Then in the kth order 
5~ 1)[-~-] =0  becomes 

~r (k)(O" - -  2"C 1 p )  - -  (0" - -  2"~ 1 ff/((r 0)) ~r ( 2 0 )  

k--1 
=-3"c,PZ~k-')+'r,P3ff~ ~-2 ) - z ,  Z ~(~'~f-;)  

j I 
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~(o) is known and suggests the in t roduct ion of new variables u = 2 z i p -  a, 
v = 4 % p -  a. The term O(k)is a homogeneous  polynomial  of order k + 2 in 
u and v and thus may  be written as O(k)= vk+2p~(z), z = u/v, and P~(z) is 
a po lynomia l  of order  k + 2 in z. In  these variables Eq. (20) is 

(k + 2) Pk(z) + [1 - z(1 - 2%)]  P'k(z) (21) 

3 1 k-1 
=--~(1--z)2Xk_l+T2-(1--z)3Xk_2--r, . ,~j ~ YjYk j. 

j = l  

where Xk = 2(k + 2) Pk + (1 - 2z) P~, and Y~ = (k + 2) Pk + (1 - z) P~:. The 
part icular  solution of (21) is then easily found by direct integration. In fact, 
for rl  < 1/2 one gets 

k + 2  

ai w' (22) Pk(co)=Y ~ (k+2) 7- i  
i = 0  

where w = y - z ,  7 = 1 / ( 1 - 2 % ) ,  and ai are the coefficients of the poly- 
nomial  expansion of the r ight-hand side of  (21) in powers  of  w. Similarly 
for vl/> 1/2. In fact, the singular character  of (21) at rl  = 1/2 suggests, even  
though this would be difficult to prove,  the limit of convergence of 
the per turbat ions.  These equat ions yield an efficient a lgori thm for artificial 
intelligence software. Similar equat ions may  be derived for the function R. 
In principle the theory is applicable also to more  then one expansion 
parameter .  

Fo r  reference, I list the function 0(x,  0 i t )  to the fourth order in ~, i.e., 
to the tenth order  in fl, for Ixl ~< a/b: 

10 

0(x,  0 l z l ) = 4 Q o  ~ pi(f lP) '  
i = 0  

Here tip = bx/a and the coefficients Pi are given by 

P o =  (221 + 1) 2, p ~ = 4 8 ~  4 -  1 6 z ~ - 2 0 2 ~ -  122~-  1 

P2 = - (  608024 - 1056~ - 5 1 6 ~  - 156T, - 3)/12 

P3 = 2 % ( 5 0 2 6 v ~ -  5 1 0 2 ~ -  1 2 0 % -  15)/5 

P4 = - % ( 1 2 8 8 6 ~  - 77422 - 87% - 3)/3 

Ps = 3~(18682~ - 64~1 - 3), P6 = - r 2 (  37508~2 - 672~t - 9)/8 

p7 = 4 r ~ ( 6 3 3 % - 5 ) ,  P8 = - 2 2 ~ ( 6 4 0 9 ~ 1 -  15)/15 

P 9  = 164v4, Plo = -41~4/3  
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This function yields the barrier height (12) to the fourth order in r and also 
the values of Oxx(xi, 0Iv). The function ~(!~ ~]~) has 3 + 4 + .-- + 13 = 88 
terms xJ~ i J, 2 ~<i~< 10 and 0 ~<j~< i. If  only the O(~ 2) terms are required, 
this reduces to 42 such terms in ~(6) and only to 18 in ~(3) for the 
metastable potential (10). In a plot of  the results one observes a moderate  
increase in the barrier height accompanied by a fairly p ronounced  increase 
in the barrier width. The corresponding function R(x, 0 t r )  in the new 
variables is 

R ( x ,  O I z ) =  1 - 9 r l f l p ( 1 - f l p / 2 ) + O ( v ~ )  
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